Prometheus 是由 SoundCloud 开源监控告警解决方案,从 2012 年开始编写代码,2015 年 GitHub 上开源,2016 年 Prometheus 成为继 Kubernetes 之后,成为 CNCF (Cloud Native Computing Foundation)中的第二个项目成员,也是第二个正式毕业的项目。
1 Prometheus 前言相关
由于 Docker 容器的特殊性,传统的 Zabbix 无法对 K8S 集群内的 Docker 状态进行监控,所以需要使用 Prometheus 来进行监控
- Prometheus 官网:https://prometheus.io/
1.1 Prometheus 的特点
- 多维度数据模型,使用时间序列数据库 TSDB 而不使用 Mysql。
- 灵活的查询语言 PromQL。
- 不依赖分布式存储,单个服务器节点是自主的。
- 主要基于 HTTP 的 Pull 方式主动采集时序数据
- 也可通过 Pushgateway 获取主动推送到网关的数据。
- 通过服务发现或者静态配置来发现目标服务对象。
- 支持多种多样的图表和界面展示,比如 Grafana 等。
1.2 基本原理
1.2.1 原理说明
Prometheus 的基本原理是通过各种 Exporter 提供的 HTTP 协议接口
周期性抓取被监控组件的状态,任意组件只要提供对应的 HTTP 接口就可以接入监控。
不需要任何 SDK 或者其他的集成过程,非常适合做虚拟化环境监控系统,比如 VM、Docker、Kubernetes 等。
互联网公司常用的组件大部分都有 Exporter 可以直接使用,如 Nginx、MySQL、Linux 系统信息等。
1.2.2 架构图:
1.2.3 三大套件
- Server 主要负责数据采集和存储,提供 PromQL 查询语言的支持。
- Alertmanager 警告管理器,用来进行报警。
- Push Gateway 支持临时性 Job 主动推送指标的中间网关。
1.2.4 架构服务过程
-
Prometheus Daemon 负责定时去目标上抓取 Metrics (指标)数据
每个抓取目标需要暴露一个http服务的接口给它定时抓取。
支持通过配置文件、文本文件、Zookeeper、DNS SRV Lookup等方式指定抓取目标。
-
PushGateway 用于 Client 主动推送 Metrics 到 PushGateway
而 Prometheus 只是定时去 Gateway 上抓取数据。
适合一次性、短生命周期的服务
-
Prometheus 在 TSDB 数据库存储抓取的所有数据
通过一定规则进行清理和整理数据,并把得到的结果存储到新的时间序列中。
-
Prometheus 通过 PromQL 和其他 API 可视化地展示收集的数据。
支持 Grafana、Promdash 等方式的图表数据可视化。
Prometheus 还提供 HTTP API 的查询方式,自定义所需要的输出。
-
Alertmanager 是独立于 Prometheus 的一个报警组件
支持 Prometheus 的查询语句,提供十分灵活的报警方式。
1.2.5 常用的 Exporter
Prometheus 不同于 Zabbix,没有 Agent,使用的是针对不同服务的 Exporter
正常情况下,监控 K8S 集群及 Node,Pod,常用的 Exporter 有四个:
-
kube-state-metrics
收集 K8S 集群 master&etcd 等基本状态信息
-
node-exporter
收集 K8S 集群 Node 信息
-
cadvisor
收集 K8S 集群 Docker 容器内部使用资源信息
-
blackbox-exporte
收集 K8S 集群 Docker 容器服务是否存活
2 部署 4 个 Exporter
老套路,下载 Docker 镜像,准备资源配置清单,应用资源配置清单:
2.1 部署 kube-state-metrics
2.1.1 准备 Docker 镜像
docker pull quay.io/coreos/kube-state-metrics:v1.5.0
docker tag quay.io/coreos/kube-state-metrics:v1.5.0 harbor.zq.com/public/kube-state-metrics:v1.5.0
docker push harbor.zq.com/public/kube-state-metrics:v1.5.0
准备目录
mkdir /data/k8s-yaml/kube-state-metrics
cd /data/k8s-yaml/kube-state-metrics
2.1.2 准备 RBAC 资源清单
cat >rbac.yaml <<'EOF'
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: kube-state-metrics
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: kube-state-metrics
rules:
- apiGroups:
- ""
resources:
- configmaps
- secrets
- nodes
- pods
- services
- resourcequotas
- replicationcontrollers
- limitranges
- persistentvolumeclaims
- persistentvolumes
- namespaces
- endpoints
verbs:
- list
- watch
- apiGroups:
- policy
resources:
- poddisruptionbudgets
verbs:
- list
- watch
- apiGroups:
- extensions
resources:
- daemonsets
- deployments
- replicasets
verbs:
- list
- watch
- apiGroups:
- apps
resources:
- statefulsets
verbs:
- list
- watch
- apiGroups:
- batch
resources:
- cronjobs
- jobs
verbs:
- list
- watch
- apiGroups:
- autoscaling
resources:
- horizontalpodautoscalers
verbs:
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: kube-state-metrics
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kube-state-metrics
subjects:
- kind: ServiceAccount
name: kube-state-metrics
namespace: kube-system
EOF
2.1.3 准备 Deploy 资源清单
cat >dp.yaml <<'EOF'
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
annotations:
deployment.kubernetes.io/revision: "2"
labels:
grafanak8sapp: "true"
app: kube-state-metrics
name: kube-state-metrics
namespace: kube-system
spec:
selector:
matchLabels:
grafanak8sapp: "true"
app: kube-state-metrics
strategy:
rollingUpdate:
maxSurge: 25%
maxUnavailable: 25%
type: RollingUpdate
template:
metadata:
labels:
grafanak8sapp: "true"
app: kube-state-metrics
spec:
containers:
- name: kube-state-metrics
image: harbor.zq.com/public/kube-state-metrics:v1.5.0
imagePullPolicy: IfNotPresent
ports:
- containerPort: 8080
name: http-metrics
protocol: TCP
readinessProbe:
failureThreshold: 3
httpGet:
path: /healthz
port: 8080
scheme: HTTP
initialDelaySeconds: 5
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 5
serviceAccountName: kube-state-metrics
EOF
2.1.4 应用资源配置清单
任意 Node 节点执行
kubectl apply -f http://k8s-yaml.zq.com/kube-state-metrics/rbac.yaml
kubectl apply -f http://k8s-yaml.zq.com/kube-state-metrics/dp.yaml
验证测试
kubectl get pod -n kube-system -o wide|grep kube-state-metrics
~]# curl -I http://172.7.21.4:8080/healthz
ok
返回 OK 表示已经成功运行。
2.2 部署 Node-exporter
由于node-exporter是监控 Node 的,需要每个节点启动一个,所以使用 DaemonSet 控制器
2.2.1 准备 Docker 镜像
docker pull prom/node-exporter:v0.15.0
docker tag prom/node-exporter:v0.15.0 harbor.zq.com/public/node-exporter:v0.15.0
docker push harbor.zq.com/public/node-exporter:v0.15.0
准备目录
mkdir /data/k8s-yaml/node-exporter
cd /data/k8s-yaml/node-exporter
2.2.2 准备 DaemonSet 资源清单
cat >ds.yaml <<'EOF'
kind: DaemonSet
apiVersion: extensions/v1beta1
metadata:
name: node-exporter
namespace: kube-system
labels:
daemon: "node-exporter"
grafanak8sapp: "true"
spec:
selector:
matchLabels:
daemon: "node-exporter"
grafanak8sapp: "true"
template:
metadata:
name: node-exporter
labels:
daemon: "node-exporter"
grafanak8sapp: "true"
spec:
volumes:
- name: proc
hostPath:
path: /proc
type: ""
- name: sys
hostPath:
path: /sys
type: ""
containers:
- name: node-exporter
image: harbor.zq.com/public/node-exporter:v0.15.0
imagePullPolicy: IfNotPresent
args:
- --path.procfs=/host_proc
- --path.sysfs=/host_sys
ports:
- name: node-exporter
hostPort: 9100
containerPort: 9100
protocol: TCP
volumeMounts:
- name: sys
readOnly: true
mountPath: /host_sys
- name: proc
readOnly: true
mountPath: /host_proc
hostNetwork: true
EOF
主要用途就是将宿主机的
/proc
,sys
目录挂载给容器,是容器能获取 Node 节点宿主机信息
2.2.3 应用资源配置清单:
任意 Node 节点
kubectl apply -f http://k8s-yaml.zq.com/node-exporter/ds.yaml
kubectl get pod -n kube-system -o wide|grep node-exporter
2.3 部署 Cadvisor
2.3.1 准备 Docker 镜像
docker pull google/cadvisor:v0.28.3
docker tag google/cadvisor:v0.28.3 harbor.zq.com/public/cadvisor:v0.28.3
docker push harbor.zq.com/public/cadvisor:v0.28.3
准备目录
mkdir /data/k8s-yaml/cadvisor
cd /data/k8s-yaml/cadvisor
2.3.2 准备 DaemonSet 资源清单
Cadvisor 由于要获取每个 Node 上的 Pod 信息,因此也需要使用 Daemonset 方式运行
cat >ds.yaml <<'EOF'
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: cadvisor
namespace: kube-system
labels:
app: cadvisor
spec:
selector:
matchLabels:
name: cadvisor
template:
metadata:
labels:
name: cadvisor
spec:
hostNetwork: true
#------Pod 的 Tolerations 与 Node 的 Taints 配合,做 Pod 指定调度----
tolerations:
- key: node-role.kubernetes.io/master
effect: NoSchedule
#-------------------------------------
containers:
- name: cadvisor
image: harbor.zq.com/public/cadvisor:v0.28.3
imagePullPolicy: IfNotPresent
volumeMounts:
- name: rootfs
mountPath: /rootfs
readOnly: true
- name: var-run
mountPath: /var/run
- name: sys
mountPath: /sys
readOnly: true
- name: docker
mountPath: /var/lib/docker
readOnly: true
ports:
- name: http
containerPort: 4194
protocol: TCP
readinessProbe:
tcpSocket:
port: 4194
initialDelaySeconds: 5
periodSeconds: 10
args:
- --housekeeping_interval=10s
- --port=4194
terminationGracePeriodSeconds: 30
volumes:
- name: rootfs
hostPath:
path: /
- name: var-run
hostPath:
path: /var/run
- name: sys
hostPath:
path: /sys
- name: docker
hostPath:
path: /data/docker
EOF
人为影响 K8S 调度策略的三种方法:
- 污点、容忍度方法
- 污点:运算节点 Node 上的污点
- 容忍度:Pod 是否能够容忍污点
- nodename:让 Pod 运行在指定的 node 上
- nodeSelector:通过标签选择器,让 Pod 运行在指定的一类 Node 上
Tolerations: 容忍度
当匹配到 key = xx 这个标签时,执行 effect 动作(不调度)
如果已在指定 node 打污点(taint),后面的 DP 如果想调度到污点 Node,就必须加 tolerations(容忍) 标签
给 Node 加污点,常用用途:
- 指定特定服务在特定 Node 执行
- 目标 Node 准备下线维护、退租(需要排空 Pod)
具体参考:https://kubernetes.io/zh/docs/concepts/scheduling-eviction/taint-and-toleration/
2.3.3 应用资源配置清单:
应用清单前,先在每个 Node 上做以下软连接,否则服务可能报错
mount -o remount,rw /sys/fs/cgroup/
ln -s /sys/fs/cgroup/cpu,cpuacct /sys/fs/cgroup/cpuacct,cpu
应用清单
kubectl apply -f http://k8s-yaml.zq.com/cadvisor/ds.yaml
检查:
kubectl -n kube-system get pod -o wide|grep cadvisor
2.4 部署 blackbox-exporter
2.4.1 准备 Docker 镜像
docker pull prom/blackbox-exporter:v0.15.1
docker tag prom/blackbox-exporter:v0.15.1 harbor.zq.com/public/blackbox-exporter:v0.15.1
docker push harbor.zq.com/public/blackbox-exporter:v0.15.1
准备目录
mkdir /data/k8s-yaml/blackbox-exporter
cd /data/k8s-yaml/blackbox-exporter
2.4.2 准备 ConfigMap 资源清单
cat >cm.yaml <<'EOF'
apiVersion: v1
kind: ConfigMap
metadata:
labels:
app: blackbox-exporter
name: blackbox-exporter
namespace: kube-system
data:
blackbox.yml: |-
modules:
http_2xx:
prober: http
timeout: 2s
http:
valid_http_versions: ["HTTP/1.1", "HTTP/2"]
valid_status_codes: [200,301,302]
method: GET
preferred_ip_protocol: "ip4"
tcp_connect:
prober: tcp
timeout: 2s
EOF
2.4.3 准备 Deployment 资源清单
cat >dp.yaml <<'EOF'
kind: Deployment
apiVersion: extensions/v1beta1
metadata:
name: blackbox-exporter
namespace: kube-system
labels:
app: blackbox-exporter
annotations:
deployment.kubernetes.io/revision: 1
spec:
replicas: 1
selector:
matchLabels:
app: blackbox-exporter
template:
metadata:
labels:
app: blackbox-exporter
spec:
volumes:
- name: config
configMap:
name: blackbox-exporter
defaultMode: 420
containers:
- name: blackbox-exporter
image: harbor.zq.com/public/blackbox-exporter:v0.15.1
imagePullPolicy: IfNotPresent
args:
- --config.file=/etc/blackbox_exporter/blackbox.yml
- --log.level=info
- --web.listen-address=:9115
ports:
- name: blackbox-port
containerPort: 9115
protocol: TCP
resources:
limits:
cpu: 200m
memory: 256Mi
requests:
cpu: 100m
memory: 50Mi
volumeMounts:
- name: config
mountPath: /etc/blackbox_exporter
readinessProbe:
tcpSocket:
port: 9115
initialDelaySeconds: 5
timeoutSeconds: 5
periodSeconds: 10
successThreshold: 1
failureThreshold: 3
EOF
2.4.4 准备 Service 资源清单
cat >svc.yaml <<'EOF'
kind: Service
apiVersion: v1
metadata:
name: blackbox-exporter
namespace: kube-system
spec:
selector:
app: blackbox-exporter
ports:
- name: blackbox-port
protocol: TCP
port: 9115
EOF
2.4.5 准备 Ingress 资源清单
cat >ingress.yaml <<'EOF'
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: blackbox-exporter
namespace: kube-system
spec:
rules:
- host: blackbox.zq.com
http:
paths:
- path: /
backend:
serviceName: blackbox-exporter
servicePort: blackbox-port
EOF
2.4.6 添加域名解析
这里用到了一个域名,添加解析
vi /var/named/zq.com.zone
blackbox A 10.4.7.10
systemctl restart named
# 测试
[root@hdss7-11 ~]# dig -t A blackbox.zq.com +short
10.4.7.10
2.4.7 应用资源配置清单
kubectl apply -f http://k8s-yaml.zq.com/blackbox-exporter/cm.yaml
kubectl apply -f http://k8s-yaml.zq.com/blackbox-exporter/dp.yaml
kubectl apply -f http://k8s-yaml.zq.com/blackbox-exporter/svc.yaml
kubectl apply -f http://k8s-yaml.zq.com/blackbox-exporter/ingress.yaml
2.4.8 访问域名测试
访问 http://blackbox.zq.com,显示如下界面,表示 Blackbox 已经运行成
3 部署 Prometheus Server
3.1 准备 Prometheus Server 环境
3.1.1 准备 Docker 镜像
docker pull prom/prometheus:v2.14.0
docker tag 7317640d555e harbor.zq.com/infra/prometheus:v2.14.0
docker push harbor.zq.com/infra/prometheus:v2.14.0
准备目录
mkdir /data/k8s-yaml/prometheus-server
cd /data/k8s-yaml/prometheus-server
3.1.2 准备 RBAC 资源清单
cat >rbac.yaml <<'EOF'
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: prometheus
namespace: infra
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: prometheus
rules:
- apiGroups:
- ""
resources:
- nodes
- nodes/metrics
- services
- endpoints
- pods
verbs:
- get
- list
- watch
- apiGroups:
- ""
resources:
- configmaps
verbs:
- get
- nonResourceURLs:
- /metrics
verbs:
- get
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: prometheus
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus
subjects:
- kind: ServiceAccount
name: prometheus
namespace: infra
EOF
3.1.3 准备 Deployment 资源清单
加上
--web.enable-lifecycle
启用远程热加载配置文件,配置文件改变后不用重启prometheus调用指令是
curl -X POST http://localhost:9090/-/reload
storage.tsdb.min-block-duration=10m
只加载 10 分钟数据到内
storage.tsdb.retention=72h
保留 72 小时数据
cat >dp.yaml <<'EOF'
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
annotations:
deployment.kubernetes.io/revision: "5"
labels:
name: prometheus
name: prometheus
namespace: infra
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 7
selector:
matchLabels:
app: prometheus
strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
type: RollingUpdate
template:
metadata:
labels:
app: prometheus
spec:
containers:
- name: prometheus
image: harbor.zq.com/infra/prometheus:v2.14.0
imagePullPolicy: IfNotPresent
command:
- /bin/prometheus
args:
- --config.file=/data/etc/prometheus.yml
- --storage.tsdb.path=/data/prom-db
- --storage.tsdb.min-block-duration=10m
- --storage.tsdb.retention=72h
- --web.enable-lifecycle
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: /data
name: data
resources:
requests:
cpu: "1000m"
memory: "1.5Gi"
limits:
cpu: "2000m"
memory: "3Gi"
imagePullSecrets:
- name: harbor
securityContext:
runAsUser: 0
serviceAccountName: prometheus
volumes:
- name: data
nfs:
server: hdss7-200
path: /data/nfs-volume/prometheus
EOF
3.1.4 准备 SVC 资源清单
cat >svc.yaml <<'EOF'
apiVersion: v1
kind: Service
metadata:
name: prometheus
namespace: infra
spec:
ports:
- port: 9090
protocol: TCP
targetPort: 9090
selector:
app: prometheus
EOF
3.1.5 准备 Ingress 资源清单
cat >ingress.yaml <<'EOF'
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
annotations:
kubernetes.io/ingress.class: traefik
name: prometheus
namespace: infra
spec:
rules:
- host: prometheus.zq.com
http:
paths:
- path: /
backend:
serviceName: prometheus
servicePort: 9090
EOF
3.1.6 添加域名解析
这里用到一个域名 prometheus.zq.com
,添加解析:
vi /var/named/od.com.zone
prometheus A 10.4.7.10
systemctl restart named
3.2 部署 Prometheus Server
3.2.1 准备目录和证书
mkdir -p /data/nfs-volume/prometheus/etc
mkdir -p /data/nfs-volume/prometheus/prom-db
cd /data/nfs-volume/prometheus/etc/
# 拷贝配置文件中用到的证书:
cp /opt/certs/ca.pem ./
cp /opt/certs/client.pem ./
cp /opt/certs/client-key.pem ./
3.2.2 创建 Prometheus 配置文件
配置文件说明:
此配置为通用配置,除第一个 job
etcd
是做的静态配置外,其他 8 个 job 都是做的自动发现
因此只需要修改
etcd
的配置后,就可以直接用于生产环境
- Action:重新标签动作
- replace: 默认,通过 regex 匹配 source_label 的值,适用 replacement 来引用表达式匹配的分组
- keep: 删除 regex 于连接不匹配的目标 source_label
- drop: 删除 regex 于连接匹配的目标 source_label
- hashmod: 设置 target_label 为 modules 连接的哈希值 source_label
- labelmap: 匹配 regex 所有标签名称,然后复制匹配标签的值进行分组, replacement 分组引用 ($1,$2) 替代
cat >/data/nfs-volume/prometheus/etc/prometheus.yml <<'EOF'
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'etcd'
tls_config:
ca_file: /data/etc/ca.pem
cert_file: /data/etc/client.pem
key_file: /data/etc/client-key.pem
scheme: https
static_configs:
- targets:
- '10.4.7.12:2379'
- '10.4.7.21:2379'
- '10.4.7.22:2379'
- job_name: 'kubernetes-apiservers'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
- job_name: 'kubernetes-kubelet'
kubernetes_sd_configs:
- role: node
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __address__
replacement: ${1}:10255
- job_name: 'kubernetes-cadvisor'
kubernetes_sd_configs:
- role: node
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __address__
replacement: ${1}:4194
- job_name: 'kubernetes-kube-state'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
- source_labels: [__meta_kubernetes_pod_label_grafanak8sapp]
regex: .*true.*
action: keep
- source_labels: ['__meta_kubernetes_pod_label_daemon', '__meta_kubernetes_pod_node_name']
regex: 'node-exporter;(.*)'
action: replace
target_label: nodename
- job_name: 'blackbox_http_pod_probe'
metrics_path: /probe
kubernetes_sd_configs:
- role: pod
params:
module: [http_2xx]
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_blackbox_scheme]
action: keep
regex: http
- source_labels: [__address__, __meta_kubernetes_pod_annotation_blackbox_port, __meta_kubernetes_pod_annotation_blackbox_path]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+);(.+)
replacement: $1:$2$3
target_label: __param_target
- action: replace
target_label: __address__
replacement: blackbox-exporter.kube-system:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
- job_name: 'blackbox_tcp_pod_probe'
metrics_path: /probe
kubernetes_sd_configs:
- role: pod
params:
module: [tcp_connect]
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_blackbox_scheme]
action: keep
regex: tcp
- source_labels: [__address__, __meta_kubernetes_pod_annotation_blackbox_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __param_target
- action: replace
target_label: __address__
replacement: blackbox-exporter.kube-system:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
- job_name: 'traefik'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scheme]
action: keep
regex: traefik
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
EOF
3.2.3 应用资源配置清单
kubectl apply -f http://k8s-yaml.zq.com/prometheus-server/rbac.yaml
kubectl apply -f http://k8s-yaml.zq.com/prometheus-server/dp.yaml
kubectl apply -f http://k8s-yaml.zq.com/prometheus-server/svc.yaml
kubectl apply -f http://k8s-yaml.zq.com/prometheus-server/ingress.yaml
3.2.4 浏览器验证
访问 http://prometheus.zq.com ,如果能成功访问的话,表示启动成功
点击status->configuration就是我们的配置文件
4 使服务能被 Prometheus 自动监控
点击 status->targets,展示的就是我们在 prometheus.yml 中配置的 job-name,这些 targets 基本可以满足我们收集数据的需求。
- 5 个编号的 job-name 已经被发现并获取数据
- 接下来就需要将剩下的 4 个 job-name 对应的服务纳入监控
- 纳入监控的方式是给需要收集数据的服务添加 Annotations
4.1 让 Traefik 能被自动监控
4.1.1 修改 Traefi k的 YAML
修改 Fraefik 的 YAML 文件,跟 Labels 同级,添加 Annotations 配置
vim /data/k8s-yaml/traefik/ds.yaml
........
spec:
template:
metadata:
labels:
k8s-app: traefik-ingress
name: traefik-ingress
#--------增加内容--------
annotations:
prometheus_io_scheme: "traefik"
prometheus_io_path: "/metrics"
prometheus_io_port: "8080"
#--------增加结束--------
spec:
serviceAccountName: traefik-ingress-controller
........
任意节点重新应用配置
kubectl delete -f http://k8s-yaml.zq.com/traefik/ds.yaml
kubectl apply -f http://k8s-yaml.zq.com/traefik/ds.yaml
4.1.2 应用配置查看
等待 Pod 重启以后,再在 Prometheus 上查看 Traefik 是否能正常获取数据了
4.2 用 Blackbox 检测 TCP/HTTP 服务状态
Blackbox 是检测容器内服务存活性的,也就是端口健康状态检查,分为 TCP 和 HTTP 两种方法
能用 HTTP 的情况尽量用 HTTP,没有提供 HTTP 接口的服务才用 TCP
4.2.1 被检测服务准备
使用测试环境的 Dubbo 服务来做演示,其他环境类似
- dashboard 中开启 apollo-portal 和 test 空间中的 apollo
- dubbo-demo-service 使用 TCP 的 Annotation
- dubbo-demo-consumer使用 HTTP 的 Annotation
4.2.2 添加 TCP 的 Annotation
等两个服务起来以后,首先在 dubbo-demo-service 资源中添加一个 TCP 的 Annotation
vim /data/k8s-yaml/test/dubbo-demo-server/dp.yaml
......
spec:
......
template:
metadata:
labels:
app: dubbo-demo-service
name: dubbo-demo-service
#--------增加内容--------
annotations:
blackbox_port: "20880"
blackbox_scheme: "tcp"
#--------增加结束--------
spec:
containers:
image: harbor.zq.com/app/dubbo-demo-service:apollo_200512_0746
任意节点重新应用配置
kubectl delete -f http://k8s-yaml.zq.com/test/dubbo-demo-server/dp.yaml
kubectl apply -f http://k8s-yaml.zq.com/test/dubbo-demo-server/dp.yaml
浏览器中查看 http://blackbox.zq.com/ 和 http://prometheus.zq.com/targets
我们运行的 dubbo-demo-server 服务,TCP 端口 20880 已经被发现并在监控中
4.2.3 添加 HTTP 的 Annotation
接下来在 dubbo-demo-consumer 资源中添加一个 HTTP 的 annotation:
vim /data/k8s-yaml/test/dubbo-demo-consumer/dp.yaml
spec:
......
template:
metadata:
labels:
app: dubbo-demo-consumer
name: dubbo-demo-consumer
#--------增加内容--------
annotations:
blackbox_path: "/hello?name=health"
blackbox_port: "8080"
blackbox_scheme: "http"
#--------增加结束--------
spec:
containers:
- name: dubbo-demo-consumer
......
任意节点重新应用配置
kubectl delete -f http://k8s-yaml.zq.com/test/dubbo-demo-consumer/dp.yaml
kubectl apply -f http://k8s-yaml.zq.com/test/dubbo-demo-consumer/dp.yaml
4.3 添加监控 JVM 信息
dubbo-demo-service 和 dubbo-demo-consumer 都添加下列 annotation 注解,以便监控 Pod 中的 JVM 信息
vim /data/k8s-yaml/test/dubbo-demo-server/dp.yaml
vim /data/k8s-yaml/test/dubbo-demo-consumer/dp.yaml
annotations:
#....已有略....
prometheus_io_scrape: "true"
prometheus_io_port: "12346"
prometheus_io_path: "/"
12346 是 dubbo 的 Pod 启动命令中使用 jmx_javaagent 用到的端口,因此可以用来收集 JVM 信息
任意节点重新应用配置
kubectl apply -f http://k8s-yaml.zq.com/test/dubbo-demo-server/dp.yaml
kubectl apply -f http://k8s-yaml.zq.com/test/dubbo-demo-consumer/dp.yaml
至此,所有 9 个服务,都获取了数据